1)wyznacz te wartości parametru m, dla któych równanie ma jedno rozwiązanie
a) x^{2} + mx+m=0
b) (m-2) x^{2} + 6x+1=0
c) (m-2) x^{2} +(m-2)x+1=0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Δ = 0
Δ = m² - 4m = m(m - 4)
m(m - 4) = 0
m = 0 ∨ m = 4
b) (m - 2)x² + 6x + 1 = 0
I. co gdy m - 2 = 0 => m = 2
6x + 1 = 0
6x = -1
x = -1/6 - jest jedno rozwiązanie
m = 2 OK
II. co, gdy m - 2 ≠ 0 => m ≠ 2
(m - 2)x² + 6x + 1 = 0
Δ = 0
Δ = 36 - 4(m - 2) = 36 - 4m + 8 = 44 - 4m = 4(11 - m)
4(11 - m) = 0
11 - m = 0
m = 11
I. ∨ II.
m = 2 ∨ m = 11
c) I. Co, gdy m = 2
1 = 0 - sprzeczność.
II. Co, gdy m ≠ 2
(m - 2)x² + (m - 2)x + 1 = 0
Δ = 0
Δ = (m - 2)² - 4(m - 2) = (m - 2)(m - 2 - 4) = (m - 2)(m - 6)
(m - 2)(m - 6) = 0
( m = 2 ∨ m = 6 ) ∧ m ≠ 2
m = 6