1.oblicz V i Pc graniastosłupa prawidłowego czworokątnego, w którym przekątna o długości 8 pierwiastek z 6 jest nachylona do podstawy pod kątek 60 stopni.
2.oblicz V i Pc graniastosłupa prawidłowego trójkątnego o krawędzi podstawy długości 4cm i przekątnej ściany bocznej 2 pierwiastek z 7.
3.pola trzech ścian prostopadłościanu wynoszą odpowiednio 6, 10 i 15. Oblicz wymiary tego prostopadłościanu i jego objętość.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
W załączniku masz opis którą daną obliczam. ; )
b=8√6
sin60 z tablic = √3/2
a z naszego rysunku sinus kąta 60 = h/8√6
wiec..
√3/2 = h/8√6
√3·8√6 = 2h
8√18=2h |:2
4√18=h (√18 = 3√2)
więc nasze h= 4+3√2=7√2
d=cos60
cos60 z tablic = 1/2
a z naszego rysunku cos60= d/8√6
więc..
1/2= d/8√6
8√6=2d |:2
d=4√6
nasza objętosc ma wzor V=Pp · h
Pp (obliczajac z przekątnej kwadratu) = d²/2
Pp= (4√6)²/2
Pp=16·6/2
Pp= 48
V=48·7√2
V=336√2 [j³]
aby obliczyc Pb potrzebujemy a
a wyliczamy ze wzoru d=a√2
4√6=a√2 |:√2
a=4√3
Pb=4√3·7√2
Pb=28√6
Pc= 2Pp+4Pb
Pc= 96 + 112√6 [j²]