1.oblicz sume liczb natralnych trzycyfrowych które dzielą się przez 5 z resztą 2 . 2. Oblicz wyrazy a1 i a8 oraz an ciągu arytmetycznego w którym a5=7 , r=-2 . 3.składniki sumy 8+11+14....+155 są kolejnymi wyrazami skończonego ciągu arytmetycznego .oblicz sume wyrazów tego ciągu 4.wyznacz ciąg arytmetyczny w ktorym a6=7 i a3+a7=15 daję naj ;*;)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.1
a1 = 102
a2 = 107
an = 997
r = a2 -a1 = 107 - 102 = 5
an = a1 + ( n-1)*r = 102 + (n -1)*5 = 102 + 5n - 5 = 5n + 97
an = 5n + 97
==============
an = 997 , zatem 5n + 97 = 997
5n = 997 - 97 = 900 / : 5
n = 180
======
S180 = 0,5 *[a1 + a180]*180 = 90* [ 102 + 997] = 90*1099 = 98 910
Odp. S180 = 98 910
===================
z.2
a5 = 7, r = 2
Mamy
a5 = a1 + 4r = a1 + 4*2 = a1 + 8
a1 = a5 - 8 = 7 - 8 = - 1
========================
a8 = a1 +7r = -1 + 7*2 = -1 + 14 = 13
================================
an = a1 + (n-1)*r = -1 + ( n -1)*2 = - 1 + 2n -2 = 2n - 3
==================================================
z.3
8 + 11 + 14 + ... + 155
Mamy
a1 = 8
r = 3
an = 155
czyli
an = a1 + (n-1)*r
an = 8 + ( n-1)*3 = 8 +3n -3 = 3n + 5
zatem
3n + 5 = 155
3n = 150
n = 50
======
S50 = 0,5*[a1 + a50]*50
S50 = 25*[ 8 + 155] = 25*163 = 4 075
======================================
z.4
a6 = 7
a3 + a7 = 15
Mamy
a1 + 5r = 7
a1 +2r + a1 + 6r = 15
-----------------------------
a1 = 7 - 5r
2*(7 - 5r) + 8r = 15
-------------------------
14 - 10r + 8r = 15
-2r = 1
r = -1/2
=======
a1 = 7 - 5*(-1/2) = 7 + 2,5 = 9,5
===============================
Odp. a1 = 9,5 oraz r = - 0,5
==============================