1.Ciąg (an) określony jest wzorem an=3n+2. Wyznacz n wiedząc, że
a) a₂n₊₁=53
b) an₋₂+ an₊₁+an₊3=102
c) a₄n-a₃n=15
2. Wiemy że suma n-początkowych wyrazów ciągu(an) jest wyrażona wzorem Sn=n²-3n
a) wyznacz czwarty wyraz ciągu (an)
b) wyznacz a₁ oraz wzór na n-ty wyraz ciągu (an) dla n≥2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
z.1
a)
an = 3 n + 2
zatem
an+1 = 3*( n + 1) + 2 = 3 n + 3 + 2 = 3 n + 5
Mamy więc
a n+1 = 53 , czyli 3 n + 5 = 53
3 n = 48
n = 16
=============
b)
an = 3 n + 2
zatem
a n -2 = 3*( n -2) + 2 = 3 n - 6 + 2 = 3 n - 4
a n + 1 = 3 n + 5
a n + 3 = 3*(n + 3) + 2 = 3 n + 9 + 2 = 3 n + 11
Mamy więc
( 3 n - 4) + (3 n + 5) + ( 3 n + 11 ) = 102
9 n + 12 = 102
9 n = 90
n = 10
=======
c)
an = 3 n + 2
więc
a4n = 3*(4n) + 2 = 12 n + 2
a3n = 3*(3n) + 2 = 9 n + 2
czyli
a4n - a3n = ( 12 n + 2) - ( 9 n + 2) = 3 n
zatem
3 n = 15
n = 5
=======
z.2
a)
Sn = n^2 - 3 n
------------------------
a1 = S1 = 1^2 - 3*1 = 1 - 3 = - 2
---------------------------------------
a1 + a2 = S2 = 2^2 - 3*2 = 4 - 6 = - 2
- 2 + a2 = - 2
zatem
a2 = 0
----------
a1 + a2 + a3 = S3 =3^2 - 3*3 = 9 - 9 = 0
- 2 + 0 + a3 = 0
zatem
a3 = 2
-------------
a1 + a2 + a3 + a4 = S4 = 4^2 - 3*4 = 16 - 12 = 4
- 2 + 0 + 2 = a4 = 4
zatem
a4 = 4
=========
b )
a1 = - 2
a1 + a2 = a3 + ... + an- 1 + an = Sn
Sn-1 + an = Sn
an = Sn - Sn-1 = [ n^2 - 3 n ] - [ ( n-1)^2 - 3*( n -1)] =
= n^2 - 3 n - [ n^2 - 2 n + 1 - 3 n + 3 ] =
= n^2 - 3 n - n^2 + 5 n - 4 = 2 n - 4
an = 2 n - 4
===========