" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a) sin α=2/3
sin²α + cos²α = 1
(2/3)² + cos²α = 1
cos²α = 1 - 4/9
cos²α = 5/9
cos²α - 5/9 = 0
(cosα - √5/2)(cosα + √5/2) = 0
cosα - √5/2 = 0 lub cos + √5/2 = 0
sinα = 2/3 lub sinα = 2/3
cosα = √5/2 lub cosα = - √5/2
tgα = sinα/cosα
tgα = (√5/2)/(2/3) lub tgα = (- √5/2)/(2/3)
tgα = 0,75√5 lub tgα = - 0,75√5
ctgα = 1/tgα
ctgα = 4√5/15 lub ctgα = - 4√5/15
b)
tg α= 12/13
ctgα = 1/tgα
ctgα = 13/12
tgα = sinα/cosα
sinα = 12cosα/13
sin²α + cos²α = 1
(12cosα/13)² + cos²α = 1
144cos²α/169 + 169cos²α/169 = 1 /* 169
144cos²α +169cos²α = 169
313cos²α = 169 /: 313
cos²α = 169/313
cosα = √313/169 lub cosα = - √313/169
cosα = √313/13 lub cosα = -√313/13
sinα = 12cosα/13 lub sinα = 12cosα/13
sinα = 12√313/169 lub sinα = - 12√313/169