Wykaż, że dla każdego m ciąg (m+1/4 , m+3/6 , m+9/12) jest arytmetyczny. te liczby po ukośniku są w mianowniku.
(m+1/4 , m+3/6 , m+9/12)
a1 a2 a3
a2 - a1 = a3 - a2
(m + 3)/6 - (m+1)/4 = (m + 9)/12 - (m + 3)/6 /*12
2(m + 3) - 3(m + 1) = m + 9 - 2(m + 3)
2m + 6 - 3m - 3 = m + 9 - 2m - 6
-m + 3 = -m = 3
-m + m = 3 - 3
0 = 0
m ∈ R
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
(m+1/4 , m+3/6 , m+9/12)
a1 a2 a3
a2 - a1 = a3 - a2
(m + 3)/6 - (m+1)/4 = (m + 9)/12 - (m + 3)/6 /*12
2(m + 3) - 3(m + 1) = m + 9 - 2(m + 3)
2m + 6 - 3m - 3 = m + 9 - 2m - 6
-m + 3 = -m = 3
-m + m = 3 - 3
0 = 0
m ∈ R