1. Rozwiąż nierówności. Zbiór rozwiązań przedstaw na osi liczbowej oraz w postaci przedziału liczbowego:
a) (x-1)/2 + 1/4 < - (x+1)/2 + (2x + 1)/4
Podaj największą liczbę całkowitą spełniającą powyższą nierówność.
b) -4(2x + 5) - 3(2-3x) < 8(3+4x) + 12
Podaj największą liczbę całkowitą nie spełniającą powyższej nierównośći.
2. Rozwiąż nierówność i zapisz ile ma rozwiązań.
a) - 7(7 - x)+ 14 - x > 6x - 40
b) (x-3)/2 + 3/2 > x+1/5 + 3/10x
Z góry bardzo dziękuję.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
1) a) x-1 1 -(x+1) 2x+1
-------- + ----- ≤ ------------- + ----------------- /·4
2 4 2 4
2(x-1) + 1 ≤ -2(x+1) +2x+1
2x -2 +1 ≤ -2x -2 +2x +1
2x -1 ≤ -1
2x ≤ 0 ⇒ x ≤ 0 -------------------------------------I
-------------------------------------.-------------------->
0
x∈ (-∞, 0>
Odp. Największa liczba całkowita spełniająca nierówność to x=0.
b)
-4(2x+5) -3(2-3x) < 8(3+4x) +12
-8x -20 -6 +9x < 24 +32x +12
x -26 < 32x +36
-31x < 62 /:(-31)
x > -2 I----------------------------
---------------------I--------------------------->
-2
x∈ (-2, ∞)
Odp. Największa liczba całkowita nie spełniająca tej nierówności to x= -2.
2) a)
-7(7-x) + 14 -x ≥ 6x -40
-49 + 7x + 14 -x ≥ 6x - 40
6x - 35 ≥ 6x - 40
6x - 6x ≥ -40 + 35
0 ≥ -5 nierówność prawdziwa dla każdego x ∈ R
b) x-3 3 x+1 3
----------- + ----- > -------- + --- x /· 10
2 2 5 10
5(x-3) + 15 > 2(x+1) +3x
5x - 15 + 15 > 2x +2 +3x
5x > 5x + 2
0 > 2 sprzeczność
Nierówność jest sprzeczna i nie ma żadnego rozwiązania.
ZADANIE 1:
a)
Największa liczba całkowita spełniająca nierówność 0 (rys. do przykładu w załączniku).
b)
Największa liczba całkowita spełniająca nierówność -2 (rys. do przykładu w załączniku).
ZADANIE 2:
a)
Odp. x∈R
b)
Odp. Nierówność ma jedno rozwiązanie -1/4 (rys. do przykładu w załączniku).