" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
CARA 1
1 - √3 tan (x + π/12) = 0
1 = √3 tan (x + 15°)
tan (x + 15°) = 1/√3 × √3/√3
tan (x + 15°) = 1/3√3
tan (x + 15°) = tan 30°
x + 15° = 30° + k . 360°
Utk k = 0:
x + 15° = 30° + 0 . 360°
x + 15° = 30°
x = 30° - 15°
x = 15° = π/12
Utk k = 1/2:
x + 15° = 30° + 1/2 . 360°
x + 15° = 30° + 180°
x + 15° = 210°
x = 210° - 15°
x = 195° = 13/12π
HP = {π/12, 13/12π}
CARA 2
1 - = 0
= 1
=
Maka,
x =
atau
x =
∴Jadi himpunan penyelesaian x yang memenuhi untuk interval 0 < x ≤ 2π yaitu
HP = {x | x = atau x = }
1 = √3 tan (x + 15)
1/√3 = tan (x + 15)
√3/3 = tan (x + 15)
1/3√3 = tan (x + 15)
tan 30 = tan (x + 15)
30 + k . 360 = x + 15
k = 0 :
30 + 0 . 360 = x + 15
30 = x + 15
x = 30 - 15
x = 15 ⇒ x = π/12
k = 1/2 :
30 + (1/2) . 360 = x + 15
30 + 180 = x + 15
210 = x + 15
x = 210 - 15
x = 195 ⇒ x = 13π/12
Jawaban a.