sprawdź tożsamość:
2cos(kwadrat)x - 1 = [1- tg(kwadrat)x]/[1+ tg(kwadrat)x]
P = (1 - tg^2 x)/( 1 + tg^2 x) = ( 1- ( sin ^x)/(cos^x))/(1 + (sin^2)/(cos^2x)) =
= [ cos^x/ cos^2x - sin^x/cos^2 x]/[ cos^2x /cos^2x + sin^2x/ cos^2 x] =
= [( cos^2x - sin^x)/ cos^2x]/[(cos^2x + sin^2x)/cos^2 x] =
= [(cos^2x - sin^2x)/ cos^x] *[ cos^2 x / 1] = cos^2 x - sin^2 x =
= cos^2 x - ( 1 - cos^2 x) = 2 cos^2 x - 1 = L
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
P = (1 - tg^2 x)/( 1 + tg^2 x) = ( 1- ( sin ^x)/(cos^x))/(1 + (sin^2)/(cos^2x)) =
= [ cos^x/ cos^2x - sin^x/cos^2 x]/[ cos^2x /cos^2x + sin^2x/ cos^2 x] =
= [( cos^2x - sin^x)/ cos^2x]/[(cos^2x + sin^2x)/cos^2 x] =
= [(cos^2x - sin^2x)/ cos^x] *[ cos^2 x / 1] = cos^2 x - sin^2 x =
= cos^2 x - ( 1 - cos^2 x) = 2 cos^2 x - 1 = L