" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
sin²α + cos²α = 1
a) 1 - 2sin²α = 2cos²α - 1
L = 1 - 2sin²α = 1 - 2(1 - cos²α) = 1 - 2 + 2cos²α = 2cos²α - 1 = P
zawsze określone
b) cosα(1/cosα - cosα) = sin²α
L = cosα(1/cosα - cosα) = cosα/cosα - cos²α = 1 - cos²α = sin²α = P
lewa strona jest nieokreślona dla cosα = 0
α ≠ π/2 + kπ
c) (1 + sinα)/cosα = cosα/(1 - sinα)
L = (1 + sinα)/cosα = (1 + sinα)(1 - sinα)/cosα(1 - sinα) = (1 - sin²α)/cosα(1 - sinα) = cos²α/cosα(1 - sinα) = cosα/(1 - sinα) = P
lewa strona jest nieokreślona dla cosα = 0, prawa dla sinα = 1
α ≠ π/2 + kπ
jak masz pytania to pisz na pw
L=1-2sin²α=sin²α+cos²α-2sin²α=cos²α-sin²α=cos²α-(1-cos²α)=
cos²α-1+cos²α= cos²α-1=P
L=P
b)cosα(1/cosα-cosα)= sin²α
L=cosα(1/cosα-cosα)= 1-cos²α=sin²α=P
L=P
c)1+sinα/cosα=cosα/1-sinα
P=cosα/1-sinα=cosα(1+sinα)/(1-sinα)(1+sinα)=cosα(1+sinα)/(1-sin²α)=
cosα(1+sinα)/cos²α=(1+sinα)/cosα=L
L=P