x^2 + y^2 - 8y = 0
zatem
( x - 0)^2 + ( y - 4)^2 - 16 = 0
( x - 0)^2 + ( y - 4)^2 = 16
S = ( 0; 4) oraz r = 4
--------------------------------
s = - 1/2
r1 = I -1/2 I*r = 0,5*4 = 2
x' = ( -1/2) x
y' = ( -1/2) y
Obraz punktu S
x' = (- 1/2)*0 = 0
y' = ( -1/2)*4 = - 2
czyli S1 = ( 0; - 2)
Równanie okręgu jednokładnego do danego:
( x - 0)^2 + ( y + 2)^2 = 4
===========================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x^2 + y^2 - 8y = 0
zatem
( x - 0)^2 + ( y - 4)^2 - 16 = 0
( x - 0)^2 + ( y - 4)^2 = 16
zatem
S = ( 0; 4) oraz r = 4
--------------------------------
s = - 1/2
zatem
r1 = I -1/2 I*r = 0,5*4 = 2
x' = ( -1/2) x
y' = ( -1/2) y
Obraz punktu S
x' = (- 1/2)*0 = 0
y' = ( -1/2)*4 = - 2
czyli S1 = ( 0; - 2)
Równanie okręgu jednokładnego do danego:
( x - 0)^2 + ( y + 2)^2 = 4
===========================