zadanie matematyka liczby rzecztwiste zadania w załączniku 6 i 7 i druga kartka
6. a) |x-2| = √2
x-2 = √2 ∧ x-2 = -√2
x = √2+2 ∧ x - 2 = -√2 + 2
b) |x+3| = 0
x + 3 = 0
x = -3
c) |5x - 3| = 0,4
5x - 3 = 0,4 ∧ 5x - 3 = - 0,4
5x = 3,4 ∧ 5x = 2,6
x = 0,68 ∧ x = 0,52
d) √[(x+3)²] = 2
|x+3| = 2
x + 3 = 2 ∧ x +3 = -2
x = -1 ∧ x = -5
e) √[49-14x+x²] = 1
√[(x - 7)²] = 1
|x-7| = 1
x-7 = 1 ∧ x - 7 = -1
x = 8 ∧ x = 6
7. a) |x+3| ≥ 5
x + 3 ≥ 5 ∧ x + 3 ≤ -5
x ≥ 2 ∧ x ≤ -8
b) |x-2| < 1
x - 2 < 1 ∧ x - 2 > -1
x < 3 ∧ x > 1
c) √[36+12x + x²] ≤ 6
√[(x+6)²] ≤ 6
|x+6| ≤ 6
x + 6 ≤ 6 ∧ x + 6 ≥ -6
x ≤ 0 ∧ x ≥ -12
Kartka.
a) |x+2| = 3
x + 2 = 3 ∧ x + 2 = -3
x = 1 ∧ x = -5
b) |x-3| ≤ 2
x - 3≤ 2 ∧ x - 3 ≥ -2
x ≤ 5 ∧ x ≥ 1
c) |x+3| > 1
x + 3 > 1 ∧ x + 3 < -1
x > -2 ∧ x < -4
_____
a) √[x² - 3x + ⁹/₄] ≤ ¾
√[(x - ³/₂)²] ≤ ¾
|x-³/₂| ≤ ¾
x - ³/₂ ≤ ¾ ∧ x - ³/₂ ≥ -¾
x ≤ ⁹/₄ ∧ x ≥ ¾
b) √[9 - 6x + x²] > 2
√[(x - 3)²] > 2
|x-3| > 2
x - 3 > 2 ∧ x - 3 < -2
x > 5 ∧ x < 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
6. a) |x-2| = √2
x-2 = √2 ∧ x-2 = -√2
x = √2+2 ∧ x - 2 = -√2 + 2
b) |x+3| = 0
x + 3 = 0
x = -3
c) |5x - 3| = 0,4
5x - 3 = 0,4 ∧ 5x - 3 = - 0,4
5x = 3,4 ∧ 5x = 2,6
x = 0,68 ∧ x = 0,52
d) √[(x+3)²] = 2
|x+3| = 2
x + 3 = 2 ∧ x +3 = -2
x = -1 ∧ x = -5
e) √[49-14x+x²] = 1
√[(x - 7)²] = 1
|x-7| = 1
x-7 = 1 ∧ x - 7 = -1
x = 8 ∧ x = 6
7. a) |x+3| ≥ 5
x + 3 ≥ 5 ∧ x + 3 ≤ -5
x ≥ 2 ∧ x ≤ -8
b) |x-2| < 1
x - 2 < 1 ∧ x - 2 > -1
x < 3 ∧ x > 1
c) √[36+12x + x²] ≤ 6
√[(x+6)²] ≤ 6
|x+6| ≤ 6
x + 6 ≤ 6 ∧ x + 6 ≥ -6
x ≤ 0 ∧ x ≥ -12
Kartka.
a) |x+2| = 3
x + 2 = 3 ∧ x + 2 = -3
x = 1 ∧ x = -5
b) |x-3| ≤ 2
x - 3≤ 2 ∧ x - 3 ≥ -2
x ≤ 5 ∧ x ≥ 1
c) |x+3| > 1
x + 3 > 1 ∧ x + 3 < -1
x > -2 ∧ x < -4
_____
a) √[x² - 3x + ⁹/₄] ≤ ¾
√[(x - ³/₂)²] ≤ ¾
|x-³/₂| ≤ ¾
x - ³/₂ ≤ ¾ ∧ x - ³/₂ ≥ -¾
x ≤ ⁹/₄ ∧ x ≥ ¾
b) √[9 - 6x + x²] > 2
√[(x - 3)²] > 2
|x-3| > 2
x - 3 > 2 ∧ x - 3 < -2
x > 5 ∧ x < 1