" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(2x³ - 16)(x + 1) = 0
2x³ - 16 = 0 lub x = - 1
x³ = 8 lub x = - 1
x = 2 lub x = - 1
2 * (- 1) =- - 2
odp d
zad 2
1/4 * 4³ - 1/2 * 4² + 4 = 4² - 8 + 4 = 4² - 4 = 16 - 4 = 12
odp b
zad 3
S = 3x³ - 1/4x² - 2 , T = 1/2x + 1
S + T² = 3x³ - 1/4x² - 2 + (1/2x + 1) = 3x³ - 1/4x² - 2 + 1/4x² + x + 1 =
= 3x³ + x - 1
zad 4
2x(x² + 6x + 9) = 0
2x = 0 lub x² + 6x + 9 = 0
x = 0
lub x² + 6x + 9 = 0
Δ = 6² - 4 * 1 * 9 = 36 - 36 = 0
x₁ = x₂ = - b/a = - 6/2 = - 3
x = 0 < 2
zad 5
a)
x³ - 4x² - 12x = 0
x(x² - 4x - 12) = 0
x = 0 lub x² - 4x - 12 = 0
x² - 4x - 12 = 0
Δ = (- 4)² - 4 * 1 * ( - 12) = 16 + 48 = 64
√Δ = √64 = 8
x₁ = (4 - 8)/2 = - 4/2 = - 2
x₂ = (4 + 8)/2 = 12/2 = 6
x = 0 lub x = - 2 lub x = 6
b)
x³ - 16x = 0
x(x² - 16) = 0
x = 0 lub x² - 16 = 0
x² - 16 = 0
(x - 4)(x + 4) = 0
x = 4 lub x = - 4
x = 0 lub x = 4 lub x = - 4
zad 6
x(4x + 3)(x - 1) = 0
x = 0 lub x = - 3/4 lub x = 1
p = 0 + (- 3/4) + 1 = 1/4
√p = √(1/4) = 1/2
zad 7
x³ + 3x² + (m² - 2m)x - 4 = 0
(- 2)³ + 3(- 2)² + (m² - 2m)(- 2) - 4 = 0
- 8 + 12 + 2m² + 4m - 4 = 0
2m² + 4m = 0
2m(m + 2) = 0
2m = 0 lub m + 2 = 0
m = 0 lub m = - 2
Zad. 2
Zad. 3
Zad. 4
ten warunek spełnia 0
Zad. 5
x należy do {-2,0, 6}
x należy do {-4,0,4}
Zad. 6
Zad. 7
liczba -2 jest pierwiastkiem równania dla m=0 i m=2