zad.1.67
Zad.1.67
a)
(2x+4)·(4x-1) = 0
2x+4 = 0 /:2
x+2 = 0
x = -2
lub
4x-1 = 0
4x = 1 /:4
x = 1/4
Odp. x = -2 v x = 1/4
b)
(2x-1)·x² = 0
2x-1 = 0
2x = 1 /:2
x = 1/2
x² = 0 => x = 0
Odp. x = 0 v x = 1/2
c)
(1+x)/(x+5) = 0
D: R \ {-5}
Mianownik nie może być zerem, zatem:
1+x = 0
x = -1
Odp.x = -1
d)
(5x-5)/(x-1) = 0
D: R \{1}
5x-5 = 0 /:5
x-1 = 0
x = 1
Odp. x = 1
e)
(2x-6)(2-x)/(x-2) = 0
D: R \ {2}
2x-6 = 0 /:2
x-3 = 0
x = 3
2-x = 0
-x = -2
x = 2
Odp. x = 2 v x = 3
f)
(9-x²)/(x-3) = 0
D: R \ {3}
9-x² = (3+x)(3-x) = 0
3+x = 0
x = -3
3-x = 0
-x = -3
x = 3 - wykluczamy, bo 3∉ D
Odp. x = -3
g)
(x²-4)/(x+2) = 0
D: R \ {-2}
x²-4 = (x+2)(x-2) = 0
x = -2 - wykuczamy, bo -2∉D
x-2 = 0
Odp. x = 2
h)
(x²+1)/(x+7) = 0
D: R \ {-7}
x²+1 > 0, równanie sprzeczne
i)
x(x-1)(x-2)/(x²-1) = 0
x²-1 = (x+1)(x-1)
D: R \ {-1, 1}
x = 0
x²-1 = (x+1)(x-1) = 0
x = -1, wykluczamy, bo -1 ∉ D
x = 1, wykluczamy, bo 1 ∉ D
Odp. x = 0 v x = 2
j)
(x²-25)(x²-16)/[(x+4)(x-5)] = 0
D: R \ {-4, 5}
x2-25 = (x+5)(x-5) = 0
x = -5
x = 5 - wykluczamy, bo 5 ∉ D
x²-16 = (x+4)(x-4) = 0
x = -4 - wykluczamy, bo -4 ∉ D
x = 4
Odp. x = -5 v x = 4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Zad.1.67
a)
(2x+4)·(4x-1) = 0
2x+4 = 0 /:2
x+2 = 0
x = -2
lub
4x-1 = 0
4x = 1 /:4
x = 1/4
Odp. x = -2 v x = 1/4
b)
(2x-1)·x² = 0
2x-1 = 0
2x = 1 /:2
x = 1/2
lub
x² = 0 => x = 0
Odp. x = 0 v x = 1/2
c)
(1+x)/(x+5) = 0
D: R \ {-5}
Mianownik nie może być zerem, zatem:
1+x = 0
x = -1
Odp.x = -1
d)
(5x-5)/(x-1) = 0
D: R \{1}
5x-5 = 0 /:5
x-1 = 0
x = 1
Odp. x = 1
e)
(2x-6)(2-x)/(x-2) = 0
D: R \ {2}
2x-6 = 0 /:2
x-3 = 0
x = 3
lub
2-x = 0
-x = -2
x = 2
Odp. x = 2 v x = 3
f)
(9-x²)/(x-3) = 0
D: R \ {3}
9-x² = (3+x)(3-x) = 0
3+x = 0
x = -3
lub
3-x = 0
-x = -3
x = 3 - wykluczamy, bo 3∉ D
Odp. x = -3
g)
(x²-4)/(x+2) = 0
D: R \ {-2}
x²-4 = (x+2)(x-2) = 0
x+2 = 0
x = -2 - wykuczamy, bo -2∉D
lub
x-2 = 0
x = 2
Odp. x = 2
h)
(x²+1)/(x+7) = 0
D: R \ {-7}
x²+1 > 0, równanie sprzeczne
i)
x(x-1)(x-2)/(x²-1) = 0
x²-1 = (x+1)(x-1)
D: R \ {-1, 1}
x = 0
lub
x-2 = 0
x = 2
lub
x²-1 = (x+1)(x-1) = 0
x = -1, wykluczamy, bo -1 ∉ D
x = 1, wykluczamy, bo 1 ∉ D
Odp. x = 0 v x = 2
j)
(x²-25)(x²-16)/[(x+4)(x-5)] = 0
D: R \ {-4, 5}
x2-25 = (x+5)(x-5) = 0
x = -5
lub
x = 5 - wykluczamy, bo 5 ∉ D
x²-16 = (x+4)(x-4) = 0
x = -4 - wykluczamy, bo -4 ∉ D
x = 4
Odp. x = -5 v x = 4