Zad znajdź wzór ciągu arytmetycznego jeśli:
a),
b),
c),
a) a1 = 6r = 2
Jeśli (a_n) jest ciagiem arytmetycznym o różnicy r, to:
a_n = a1 + (n-1) · r
dla dowolnego n ∈ N+
a1 = 2
6r = 2 /:6
r = ⅓
a_n = 2 + ⅓(n-1)
===============
b) a3 = 7, a6 = 16
a3 = a1+2r = 7
a6 = a1+5r = 16
a1+2r = 7
a1+5r = 16
--------------(-)
5r-2r = 16-7
3r = 9 /:3
r = 3
a1 = 7-2r = 7-2·3 = 7-6
a1 = 1
a_n = 1 + 3(n-1)
==============
c)
a1 + a4 = 17
a2 + a8 = 32
a1 + a1 + 3r = 17
a1 + r + a1 + 7r = 32
2a1+3r = 17
2a1+8r = 32
---------------(-)
8r-3r = 32-17
5r = 15 /:5
2a1 = 17-3r = 17-3·3 = 17-9 = 8
2a1 = 8 /:2
a1 = 4
a_n = 4 + 3(n-1)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) a1 = 6r = 2
Jeśli (a_n) jest ciagiem arytmetycznym o różnicy r, to:
a_n = a1 + (n-1) · r
dla dowolnego n ∈ N+
a1 = 2
6r = 2 /:6
r = ⅓
a_n = 2 + ⅓(n-1)
===============
b) a3 = 7, a6 = 16
a3 = a1+2r = 7
a6 = a1+5r = 16
a1+2r = 7
a1+5r = 16
--------------(-)
5r-2r = 16-7
3r = 9 /:3
r = 3
a1 = 7-2r = 7-2·3 = 7-6
a1 = 1
a_n = 1 + 3(n-1)
==============
c)
a1 + a4 = 17
a2 + a8 = 32
a1 + a1 + 3r = 17
a1 + r + a1 + 7r = 32
2a1+3r = 17
2a1+8r = 32
---------------(-)
8r-3r = 32-17
5r = 15 /:5
r = 3
2a1 = 17-3r = 17-3·3 = 17-9 = 8
2a1 = 8 /:2
a1 = 4
a_n = 4 + 3(n-1)
==============