Zad. 2.26 i 2.27. Proszę o wytłumaczenie, skąd się to wzięło... Jutro mam z tego kart. Ratunku!!!
rakoleg2.26 a) log₅(log₃x) = 0 log₅(log₃x) = log₅1 log₃x = 1 3¹ = x x = 3 b) log₂(log₂x) =-1 log₂(log₂x) =log₂2⁻ ¹ 2⁻ ¹ = 1/2 log₂x = 1/2 x = 2^½ = √2 x = √2 c) log₄[log₃(log₂x)] = 1/2 1. log₃(log₂x) = y log₄y = 1/2 4^½ = y y = √4 = 2 log₃(log₂x) = 2 2. log₂x = z log₃z = 2 z = 3² = 9 log₂x = 9 x = 2⁹ = 512 d) log [log₂(log₂^½ x)] = -1/2 2^½ = √2 ¼ 1. log₂(log₂^½ x) = y
log y = -1/2 ¼ y = (1/4)^-½ = 4^½ = √4 = 2 log₂(log₂^½ x) = 2 2. log₂^½ x = z log₂z = 2 z = 2² = 4 log₂^½ x = 4 x = (√2)⁴ = 2² = 4 x = 4 2.27 a) x = 2 a = 4 log₄2 = 1/2 b) x = 3 a = 1/3 log 3 = -1 ⅓ c) x = 0 a = 5 x ≠ 0 x>0 d) x = 0 a = 1/5 x ≠ 0 х>0 e) x = 1 a = √2 log₂^½ 1 = 1/2 f) x = 1 a = 100 log₁₀₀1 = 0
a) log₅(log₃x) = 0
log₅(log₃x) = log₅1
log₃x = 1
3¹ = x
x = 3
b) log₂(log₂x) =-1
log₂(log₂x) =log₂2⁻ ¹
2⁻ ¹ = 1/2
log₂x = 1/2
x = 2^½ = √2
x = √2
c) log₄[log₃(log₂x)] = 1/2
1. log₃(log₂x) = y
log₄y = 1/2
4^½ = y
y = √4 = 2
log₃(log₂x) = 2
2. log₂x = z
log₃z = 2
z = 3² = 9
log₂x = 9
x = 2⁹ = 512
d) log [log₂(log₂^½ x)] = -1/2 2^½ = √2
¼
1. log₂(log₂^½ x) = y
log y = -1/2
¼
y = (1/4)^-½ = 4^½ = √4 = 2
log₂(log₂^½ x) = 2
2. log₂^½ x = z
log₂z = 2
z = 2² = 4
log₂^½ x = 4
x = (√2)⁴ = 2² = 4
x = 4
2.27
a) x = 2 a = 4
log₄2 = 1/2
b) x = 3 a = 1/3
log 3 = -1
⅓
c) x = 0 a = 5
x ≠ 0 x>0
d) x = 0 a = 1/5
x ≠ 0 х>0
e) x = 1 a = √2
log₂^½ 1 = 1/2
f) x = 1 a = 100
log₁₀₀1 = 0