Zad 1 kat podzielono na trzy części i przez punkty podziału poprowadzono styczne które przecinają się w punktach A,B,C oblicz miarę kątów trójkąta ABC gdy okrąg ten podzielono na część w stosunku A) 3:4:5 B)5:6:7 C)2:5:5 Zad 2 W kat przyległy o wierzchołku P,z których z nich ma miarę 60 stopni wpisano okręgi o środkach 0 jeden i 0 dwa każdy o promieniu r oblicz długość punktu Pod środków tych okręgów A) r=1 B) r=2 C)r=10 D)r=200
Peashooter
1/ oczywiście jak połączysz środek okręgu z punktami styczności, to podzielisz trójkąt na 3 deltoidy, gdzie 2 kąty w tych deltoidach są proste. Zatem trzeba po prostu obliczyć kąty środkowe i odjąć 180 - ten kąt.
a) żeby łuki były w stosunku 3:4:5, to one muszą być takie 3x,4x,5x ponieważ suma tych łuków jest zawsze równa 360st, to 3x+4x+5x=360st -> x=30st -> kąty środkowe to 90st,120st,150st -> miary kątów ABC to 90st,60st,30st
b)kąty to 5x,6x,7x -> 5x+6x+7x=360st -> x=20st -> kąty środkowe to 100st, 120st, 140st -> kąty w ABC to 80st,60st,40st
c)kąty to 2x,5x,5x -> 5x+5x+2x=360st-> x=30st ->kąty środkowe to 60st, 150st, 150st -> kąty w ABC to 120st, 30st, 30st
2. Parę faktów: -środki okręgów i punkty styczności należące do jednej prostej tworzą prostokąt -widzimy 2 trójkąty 30,60,90, gdzie jednym z boków jest r (promień okręgu), w jednym przypadku r leży między kątami 90,60, a w drugim 90,30 z rysunku można zauważyć, że odległość to będzie a) √3+√3/3 b) 2(√3+1/√3) c)10(√3+1/√3) d)200(√3+1/√3)
oczywiście jak połączysz środek okręgu z punktami styczności, to podzielisz trójkąt na 3 deltoidy, gdzie 2 kąty w tych deltoidach są proste. Zatem trzeba po prostu obliczyć kąty środkowe i odjąć 180 - ten kąt.
a) żeby łuki były w stosunku 3:4:5, to one muszą być takie 3x,4x,5x
ponieważ suma tych łuków jest zawsze równa 360st, to 3x+4x+5x=360st
-> x=30st -> kąty środkowe to 90st,120st,150st -> miary kątów ABC to 90st,60st,30st
b)kąty to 5x,6x,7x -> 5x+6x+7x=360st -> x=20st -> kąty środkowe to 100st, 120st, 140st -> kąty w ABC to 80st,60st,40st
c)kąty to 2x,5x,5x -> 5x+5x+2x=360st-> x=30st ->kąty środkowe to 60st, 150st, 150st -> kąty w ABC to 120st, 30st, 30st
2.
Parę faktów:
-środki okręgów i punkty styczności należące do jednej prostej tworzą prostokąt
-widzimy 2 trójkąty 30,60,90, gdzie jednym z boków jest r (promień okręgu), w jednym przypadku r leży między kątami 90,60, a w drugim 90,30
z rysunku można zauważyć, że odległość to będzie
a) √3+√3/3
b) 2(√3+1/√3)
c)10(√3+1/√3)
d)200(√3+1/√3)