" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x2+y2-4x-2y-1=0
(x-2)²+(y-1)²=1+4+1
(x-2)²+(y-1)²=6
S=(2;1)
r=SA=√5²+3²=√25+9=√34
(x-2)²+(y-1)²=34
z.2 Dany jest okrąg o równaniu x2+y2-8x=0 i punkt P=(1,3). Napisz równanie osi symetrii, do której należy punkt P.
x2+y2-8x=0
(x-4)²+y²=16
S=(4;0)
równanie osi symetrii,:
S=(4;0) i P=(1,3).
y=ax+b
0=4a+b
3=a+b
----------odejmuje stronami
-3=3a
a=-1
b=4
y=-x+4
x² + y² -4x - 2y -1 = 0
(x -2)² -4 + (y -1)² -1 -1 = 0
(x -2)² +(y -1)² = 6
S = ( 2; 1)
A = (-3; 4)
(x -2)² + (y - 1)² = r²
(-3 -2)² + (4 - 1)² = r²
25 + 9 = r²
r² = 34
Odp. ( x-2)² + (y -1)² = 34
z.2
x² + y² - 8 x = 0
(x -4)² - 16 + (y - 0)² = 0
(x - 4)² + (y - 0)² = 16
S = ( 4; 0)
P = (1 ;3)
Będzie to prosta PS
y = ax + b
0 = 4a + b
3 = a + b
---------------
-3 = 3a ---> a = -1
b = 3 - a = 3 -(-1) = 4
Odp. y = -x + 4
B