G=6.67384 ∙ 10^-11 m³/kg s² M=5.98 ∙ 10^24 kg (masa ziemi) R=6378.41 km = 6.37841 ∙ 10^6 m (promień ziemi) r=R+h h=10 000km = 10^7 m r=16.37841 ∙ 10^6 v = √(2∙6.67384 ∙ 10^-11 ∙ 5.98 ∙ 10^24 ∙(10^7)/(16.37841 ∙ 10^6 ∙ 6.37841 ∙ 10^6)) = 8741 m/s
2. Wzór jest podobny tylko inna wysokość: h=2 000km = 2∙10^6 m r=8.37841 ∙ 10^6 v = √(2∙6.67384 ∙ 10^-11 ∙ 5.98 ∙ 10^24 ∙(2∙10^6)/(8.37841 ∙ 10^6 ∙ 6.37841 ∙ 10^6)) = 5465.52 m/s
1 votes Thanks 1
bartoszelek
V^2 = 2 * g * h podstawiam V^2 = 2*10*1000000=20000000m/s
Ep=-G∙M∙m/r
Ep0 = -G∙M∙m/R
Ek+Ep0 = Ep
Ek=Ep-Ep0
Ek=mv²/2
v=√(2(G∙M/R-G∙M/r)) = √(2GM(r-R)/(r∙R))
G=6.67384 ∙ 10^-11 m³/kg s²
M=5.98 ∙ 10^24 kg (masa ziemi)
R=6378.41 km = 6.37841 ∙ 10^6 m (promień ziemi)
r=R+h
h=10 000km = 10^7 m
r=16.37841 ∙ 10^6
v = √(2∙6.67384 ∙ 10^-11 ∙ 5.98 ∙ 10^24 ∙(10^7)/(16.37841 ∙ 10^6 ∙ 6.37841 ∙ 10^6)) = 8741 m/s
2. Wzór jest podobny tylko inna wysokość:
h=2 000km = 2∙10^6 m
r=8.37841 ∙ 10^6
v = √(2∙6.67384 ∙ 10^-11 ∙ 5.98 ∙ 10^24 ∙(2∙10^6)/(8.37841 ∙ 10^6 ∙ 6.37841 ∙ 10^6)) = 5465.52 m/s
V^2 = 2*10*1000000=20000000m/s
V=g*h
V=200000*10=2000000m/s