Wykonaj działania:
a) 1/(1-x) + 1/(1+x) + 2/(1+x^2) + 4/(1+x^4) + 8/(1+x^8) + 16/(1+x^16)=
b) 1/x(x+1) + 1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) + 1/(x+4)(x+5)=
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) 1/(1-x)... = 1-x +1 + x + 2 + 2x^2 + 4 + 4x^4 + 8 + 8x^8 + 16 + 16x^16 = 30 + 2x^2 + 4x^4 + 8x^8 + 16x^16
b) 1/x(x+1)... = x + 1 + x^2 + x + 1/(x^2 + 2x + x + 2) + 1/(x^2 + 3x + 2x + 6) + 1/(x^2 + 4x + 3x + 12) + 1/(x^2 + 5x + 4x + 20) = x + 1 + x^2 + x + x^2 + 2x + x + 2 + x^2 + 3x + 2x + 6 + x^2 + 4x + 3x + 12 = 21 + 17x + 6x^2