" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[(18x² - 8)/(20x² + 5x² + 8x + 2)]/[(24x² - 10x - 4)/(4x+1)²] = 0
D : 25x² + 8x + 2 ≠ 0
24x² - 10x - 4 ≠ 0
(4x+1)² ≠0
D : x ∈ R \ { -0,25; - 17/24; 9/8 }
[(18x² - 8)/(25x² + 8x + 2)]/[(24x² - 10x - 4)/(4x+1)²] = 0
(18x² - 8)/(25x² + 8x + 2)*(4x+1)²/(24x² - 10x - 4) = 0 /* (25x² 8x + 2)
(18x² - 8)(4x+1)²/(24x² - 10x - 4) = 0 / *(24x² - 10x - 4)
(18x² - 8)(4x+1)² = 0
18x² - 8 = 0
2(9x² - 4) = 0 /:2
(9x² - 4) = 0
(3x - 2)(3x + 2) = 0
3x - 2 = 0 lub 3x + 2 = 0
3x = 2 /: 3 lub 3x = - 2 /:3
x = 2/3 lub x = - 2/3
Zad.3)
f(x) = (5x - 2)(x + 3)
f(x) = 5x² + 15x - 2x + 6
f(x) = 5x² + 13x + 6
f(x) = a(x - p)² + q
p = - b/2a
p = - 13/10
q = - Δ/4a
Δ = 169 - 120 = 49
q = - 49/20
f(x) = 5(x + 1,3)² - 2,45 - postać kanoniczna trójmianu kwadratowego