Cara kerja
f(x) = (x² - 3x) / (x² + 2x + 1)
u = x² - 3x
u' = 2x - 3
v = x² + 2x + 1
v' = 2x + 1
f'(x) = (u'v - uv') / v²
= (2x-3)(x²+2x+1) - (x²-3x)(2x+1) / (x²+2x+1)²
= (2x³+x²-4x-3 - (2x³-5x²-3x)) / ((x+1)²)²
= (6x² - x - 3) / (x + 1)^4
f'(2) = (6(2)² - 2 - 3) / (2 + 1)^4
= (24 - 5) / 3^4
= 19/81
Mapel : Matematika
Bab : Turunan fungsi
Kode : 11.2.9
f(x) = (x² - 3x)/x² + 2x + 1
u =x² - 3x, u' = 2x - 3, v = x² +2x + 1, v' = 2x + 2
f'(x) = u/ v, f'(2) = u'v - uv'/v² = 2x - 3(x²+2x+1)- x² - 3x(2x + 2)/x²+2x+1 =2(2)-3(2²)+2(2)+1 -3(2)(2(2)+2/2²+2(2)+1 =4-12+4+1-6+4+2/4+4+1=-3-0/9=-3/9=-1/3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Cara kerja
f(x) = (x² - 3x) / (x² + 2x + 1)
u = x² - 3x
u' = 2x - 3
v = x² + 2x + 1
v' = 2x + 1
f'(x) = (u'v - uv') / v²
= (2x-3)(x²+2x+1) - (x²-3x)(2x+1) / (x²+2x+1)²
= (2x³+x²-4x-3 - (2x³-5x²-3x)) / ((x+1)²)²
= (6x² - x - 3) / (x + 1)^4
f'(2) = (6(2)² - 2 - 3) / (2 + 1)^4
= (24 - 5) / 3^4
= 19/81
Mapel : Matematika
Bab : Turunan fungsi
Kode : 11.2.9
f(x) = (x² - 3x)/x² + 2x + 1
u =x² - 3x, u' = 2x - 3, v = x² +2x + 1, v' = 2x + 2
f'(x) = u/ v, f'(2) = u'v - uv'/v² = 2x - 3(x²+2x+1)- x² - 3x(2x + 2)/x²+2x+1 =2(2)-3(2²)+2(2)+1 -3(2)(2(2)+2/2²+2(2)+1 =4-12+4+1-6+4+2/4+4+1=-3-0/9=-3/9=-1/3