Prosze o dokladne rozwiazanie krok po kroku
0,5(1/x) * 2(3/x+1) >16
liczby w nawiasach to potegi.
0,5 ^(1/x) * 2 ^(3/x + 1 ) > 16; x musi być różne od 0
(1/2)^(1/x) * 2^1 * 2*(3/x) > 16
2^(-1/x) *2 * 2^( 3/x) > 16
2* 2^( 3/x - 1/x) > 16
2* 2^(2/x) > 16 / : 2
2^(2/x) > 8 i 2/x > 0
2^(2/x) > 2^3 i x > 0
2/x > 3 / : 2 i x > 0
1/x > 3/2 i x > 0
x > 0 i x < 2/3
=========================
0,5 ^(1/x) * 2 ^(3/x + 1 ) > 16
2^(2/x) > 8
2^(2/x) > 2^3
2/x > 3 / : 2
1/x > 3/2
x < 2/3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
0,5 ^(1/x) * 2 ^(3/x + 1 ) > 16; x musi być różne od 0
(1/2)^(1/x) * 2^1 * 2*(3/x) > 16
2^(-1/x) *2 * 2^( 3/x) > 16
2* 2^( 3/x - 1/x) > 16
2* 2^(2/x) > 16 / : 2
2^(2/x) > 8 i 2/x > 0
2^(2/x) > 2^3 i x > 0
2/x > 3 / : 2 i x > 0
1/x > 3/2 i x > 0
x > 0 i x < 2/3
=========================
0,5 ^(1/x) * 2 ^(3/x + 1 ) > 16
(1/2)^(1/x) * 2^1 * 2*(3/x) > 16
2^(-1/x) *2 * 2^( 3/x) > 16
2* 2^( 3/x - 1/x) > 16
2* 2^(2/x) > 16 / : 2
2^(2/x) > 8
2^(2/x) > 2^3
2/x > 3 / : 2
1/x > 3/2
x < 2/3