Doprowadź do najprostszej postaci:(a²+2ab+b²)/a²-b²=(a²-5)/(a+√5)=(x²+√y*x)/(x³-xy)=
[a²+2ab+b²]/[a²-b²]=
[a+b]²/[a+b][a-b]=
[a+b][a+b]/[a+b][a-b]=
[a+b]/[a-b]
[a²-5]/[a+√5]=
[a+√5][a-√5]/[a+√5]=
a-√5
[x²+√y ×x]/[x³-xy]=
[x(x+√y)]/[x(x²-y)]=[x(x+√y)]/[x(x+√y)(x-√y)]=
1/[x-√y]
tu by można jeszcze usunąc niewymiernośc
(a²+2ab+b²)/a²-b²=(a+b)^2/(a-b)(a+b)=(a+b)/(a-b)(a²-5)/(a+√5)=(a-√5)(a+√5)/(a+√5)=a-√5(x²+√y*x)/(x³-xy)=x(x+√y)/x(x^2-y)=(x+√y)/(x^2-y)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[a²+2ab+b²]/[a²-b²]=
[a+b]²/[a+b][a-b]=
[a+b][a+b]/[a+b][a-b]=
[a+b]/[a-b]
[a²-5]/[a+√5]=
[a+√5][a-√5]/[a+√5]=
a-√5
[x²+√y ×x]/[x³-xy]=
[x(x+√y)]/[x(x²-y)]=[x(x+√y)]/[x(x+√y)(x-√y)]=
1/[x-√y]
tu by można jeszcze usunąc niewymiernośc
(a²+2ab+b²)/a²-b²=(a+b)^2/(a-b)(a+b)=(a+b)/(a-b)
(a²-5)/(a+√5)=(a-√5)(a+√5)/(a+√5)=a-√5
(x²+√y*x)/(x³-xy)=x(x+√y)/x(x^2-y)=(x+√y)/(x^2-y)