|1/(x-1)|*|1-x|=
|1/(x-1)*(1-x)|=
|(1-x)/(x-1)|=
|1-x|/|x-1|=
|x-1|/|x-1|=1
|1/(x-1)| * |1-x|
Z: x - 1 ≠ 0
x ≠ 1
D : x∈ R \ { 1 }
|1/(x - 1)| * |1 - x| = | 1/(x - 1)| * | - (x - 1)| =
= |1/(x - 1)| * |x - 1| =
= |1/(x-1) * (x - 1)| = |1| = 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
|1/(x-1)|*|1-x|=
|1/(x-1)*(1-x)|=
|(1-x)/(x-1)|=
|1-x|/|x-1|=
|x-1|/|x-1|=1
|1/(x-1)| * |1-x|
Z: x - 1 ≠ 0
x ≠ 1
D : x∈ R \ { 1 }
|1/(x - 1)| * |1 - x| = | 1/(x - 1)| * | - (x - 1)| =
= |1/(x - 1)| * |x - 1| =
= |1/(x-1) * (x - 1)| = |1| = 1