" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Dane:
f(1) + f(2) + f(3) = 12
f(5) + f(6) + f(7) = 48
f(x) = ax + b = ?
a = ?
b = ?
f(x) = ax + b
f(1) = a*1 + b = a + b
f(2) = a*2 + b = 2a + b
f(3) = a*3 + b = 3a + b
f(1) + f(2) + f(3) = a + b + 2a + b + 3a + b =
= 6a + 3b =
= 3(2a + b)
f(5) = a*5 + b = 5a + b
f(6) = a*6 + b = 6a + b
f(7) = a*7 + b = 7a + b
f(5) + f(6) + f(7) = 5a +b + 6a + b + 7a + b =
= 18a + 3b =
= 3(6a + b)
{ 3(2a + b) = 12 /:3
{ 3(6a + b) = 48 / :3
{ 2a + b = 4
{ 6a + b = 16
{ 4a = 12 /:4
{ b = 4 - 2a
{ a = 3
{ b = 4 - 2*3
{ a = 3
{ b = 4 - 6
{ a = 3
{ b = - 2
f(x) = 3x - 2
Odp: Funkcja liniowa dana jest wzorem: f(x) = 3x - 2.
f(x) = ax +b
f(1) = a + b,
f(2) = 2a +b,
f(3) = 3a +b,
---------------------
6a +3b =12 /:3
2a + b = 4
b = 4 -2a,równocześnie:
f(5) =5a +b,
f(6) =6a +b,
f(7) =7a +b
------------------------
18a +3b =48 /:3
6a +b = 16
podstawiam : b = 4 -2a, otrzymuję:
6a +(4 -2a) =16
6a -2a =16 -4
4a =12/4
a =3
--------
b = 4 -2a
b = 4 -2 *3,stąd
b = -2
----------
Zatem wzór danej funkcji liniowej : f(x) =3x -2
Mamy
f(1) = a*1 + b = a + b
f(2) = 2a + b
f(3) = 3a + b
f(1) = f(2) + f(3) = [a+b] +[2a +b] +[3a +b] = 6a + 3b
oraz
f(5) = 5a + b
f(6) = 6a + b
f(7) = 7a + b
f(5) = f(6) + f(7) = [5a +b] +[6a + b] + [7a + b] = 18a + 3b
Mamy zatem
6a + 3b = 12 / : 3
18a + 3b = 48 / : 3
---------------------------------
2a + b = 4 ---> b = 4 - 2a
6a + b = 16
----------------- odejmujemy stronami
6a - 2a = 16 - 4
4a = 12 / : 4
a = 3
----
b = 4 - 2*3 = 4 - 6 = -2
otrzymujemy więc funkcję liniową
f(x) = 3x - 2
===========================