Wyznacz wartośc parametru a tak, aby podana obok równanialiczba była rozwiązaniem tego równania:
Oblicz wartośc wyrażenia:
Wiedząc, że log12=a i log2=b, oblicz log90
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
z.1
( 2 + a)^2 - (2 - a)^2 = 40
4 + 4 a + a^2 - 4 + 4 a -a^2 = 40
8a = 40
a = 5
======
( 2*(-1) - a) *(2 *(-1) + a) - ( -1 - a)^2 = 2
( -2 - a)*( -2 + a) - (-2 + a)^2 = 2
4 - a^2 - ( 4 - 4 a + a^2 ) = 2
-2 a^2 + 4 a - 2 = 0 / : (-2)
a^2 - 2 a + 1 = 0
( a - 1)^2 = 0
a = 1
=======
( 4 - a)*( 4 + a) - ( 4 - a)^2 = 8
16 - a^2 - (16 - 8 a + a^2 = 8
- 2 a^2 + 8 a - 8 = 0 / : ( -2)
a^2 - 4 a + 4 = 0
( a - 2)^2 = 0
a = 2
======
z.2
[ log p(128) + log 32^(1/3) ] / log (2 p(2) ] =
= [ log p(64 *2) + log ( 2^5)^(1/3) ] / log 2*2^(1/2) =
= [ log 8 p(2) + log 2^(5/3) ] / log 2^(3/2) =
= [ log 2^3 * 2^(1/2) + log 2 ^(5/3) ] / log 2 ^(3/2) =
= [ log 2 ^(7/2) + log 2^(5/3) ] / log 2^(3/2) =
= [ log 2^(21/6) + log 2^(10/6) ] / log 2 ^(3/2) =
= log [ 2^ (21/6) * 2^(10/6) ] / log 2 ^(3/2) =
= log 2 ^(31/6) / log 2^(3/2) =
[ (31/6) * log 2 ] / [ (3/2)* log 2 ] =
= (31/6) *(2/3) = 62/18 = 31/9
===============================
z.3
log 12 = a
log 2 = b
--------------
log 90 = log [ 180 / 2 ] = log 180 - log 2 = log [15*12] - log 2 =
= log 15 + log 12 - log 2 = log [ 1,5 *10] + log 12 - log 2 =
= log 1,5 + log 10 + log 12 - log 2 = log [12/8] + 1 + log 12 - log 2 =
= log 12 - log 8 + 1 + log 12 - log 2 = 2 log 12 - log 2 - log 2^3 + 1 =
= 2 log 12 - log 2 - 3 log 2 + 1 = 2 log 12 - 4 log 2 + 1 =
= 2*a - 4*b + 1
===============
======================================