wyznacz wartość parametru k.
a) W(x)=2x3+(k2+1)x2+x-k; x+1 (czyli x to -1)
b) W(x)=x3-kx2-(k2+3)x-4; x-4 (czyli x to 4)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
W(x)=2x3+(k2+1)x2+x-k; x+1 (czyli x to -1)
W(-1) = 2*(-1)^3 + (k^2 +1) *(-1)^2 + (-1) -k
W(-1) = -2 + k^2 -1 - k
k^2 - k - 2
delta = (-1)^2 - 4*1(-2)
delta = 1 +8
delta = 9
pierwiastek z delty = 3
1 -3
k1 = ------- = -1
2
1+3
k2 = -------- = 2
2
b)
W(4) = 4^3 - 4^2k - (k^2+3)*4 -4
W(4) = 64 - 16k -4k^2 - 12 -4
W(4) = -4k^2 - 16k + 48
delta = (-16)^2 - 4*(-4)*48
delta = 256 + 768
delta = 1024
pierwiastek z delty = 32
16 - 32
k1 = ------------ = 2
2*(-4)
16+32
k2 = ----------------- = -6
2,*(-4)
a)
W(-1)=0
czyli:
2*(-1)³ + (k²+1)*(-1)² + (-1) -k =0
-2 +k²+1-1-k =0
k²-k-2=0
Δ=b²-4ac =1+8=9 √Δ =3
k1 = (-b-√Δ)/2a = (1-3)/2-2/2=-1
k2=(-b+√Δ)/2a = (1+3)/2 = 4/2=2
k=-1 ∨ k=2
b)
W(4) = 0
czyli:
4³ - k*4² - (k²+3)*4 - 4 =0
64 - 16k - 4k²-12-4=0
-4k²-16k+48 =0 /:(-4)
k² -4k -12=0
Δ=16 + 48=64 √Δ=8
k1=(4-8)/2=-4/2=-2
k2=(4+8)/2=12/2=6
k=-2 ∨ k=6