wyznacz trzeci, czwarty, ósmy i 2k-3 wyraz ciągu opisanego wzorem ogólnym a) an= -3n+7 b) bn- (-1) do n+1
a)
an= -3n+7
a3= -3*3+7 = -9+7 = -2
a4= -3*4+7 = -12+7 = -5
a8= -3*8+7 = -24+7 = -17
a(2k-3)= -3*(2k-3)+7 = -6k+9+7 = -6k+16
b)
bn = (-1)^(n+1)
b3 = (-1)^(3+1) = (-1)^4
b4 = (-1)^(4+1) = (-1)^5
b8 = (-1)^(8+1) = (-1)^9
b(2k-3) = (-1)^(2k-3+1) = (-1)^(2k-2)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
an= -3n+7
a3= -3*3+7 = -9+7 = -2
a4= -3*4+7 = -12+7 = -5
a8= -3*8+7 = -24+7 = -17
a(2k-3)= -3*(2k-3)+7 = -6k+9+7 = -6k+16
b)
bn = (-1)^(n+1)
b3 = (-1)^(3+1) = (-1)^4
b4 = (-1)^(4+1) = (-1)^5
b8 = (-1)^(8+1) = (-1)^9
b(2k-3) = (-1)^(2k-3+1) = (-1)^(2k-2)