Wyznacz n, wiedząc, że n należy do liczb naturalnych dodatnich:
a) (n nad n-1) + ( 2n nad 2n-2) = 18
( n na n - 1) = n
( 2 n nad 2n - 2) = ( 2 n) ! / [ 2*( n - 2) ! ] = [ (2 n -1)*2 n]/ 2 = (2n - 1)*n
zatem mamy
( n nad n - 1) + ( 2n nad 2n - 2) = n + (2n - 1)*n = 2 n^2
2 n^2 = 18
n^2 = 9
n = 3
================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
( n na n - 1) = n
( 2 n nad 2n - 2) = ( 2 n) ! / [ 2*( n - 2) ! ] = [ (2 n -1)*2 n]/ 2 = (2n - 1)*n
zatem mamy
( n nad n - 1) + ( 2n nad 2n - 2) = n + (2n - 1)*n = 2 n^2
2 n^2 = 18
n^2 = 9
n = 3
================