Wyznacz ciąg geometryczny w którym
a₁q⁴-a₁=15
a₁q₃-a₁q=6
a₁(q⁴-1)=15
a₁=15/q⁴-1
a₁q(q²-1)=6
15/q⁴-1 *q(q²-1)=6
15/(q²-1)(q²+1)*q(q²-1) =6
15/(q²+1)*q=6
15q=6q²+6
-6q²+15q-6=0
Δ=81 √Δ=9
q₁=½ q₂=-2
a₁q⁴-a₁=15 v 0,0625a₁-a₁=15 a₁=-16
16a₁-a₁=15
a₁=1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a₁q⁴-a₁=15
a₁q₃-a₁q=6
a₁(q⁴-1)=15
a₁=15/q⁴-1
a₁q(q²-1)=6
15/q⁴-1 *q(q²-1)=6
15/(q²-1)(q²+1)*q(q²-1) =6
15/(q²+1)*q=6
15q=6q²+6
-6q²+15q-6=0
Δ=81 √Δ=9
q₁=½ q₂=-2
a₁q⁴-a₁=15 v 0,0625a₁-a₁=15 a₁=-16
16a₁-a₁=15
a₁=1