Wykaż tożsamość:
V[(1-cosx)/(1+cosx)] + V[(1+cosx)/(1-cosx)] = 2/IsinxI I^2 (obie strony podnoszę do 2-giej)
{V[(1-cosx)/(1+cosx)] + V[(1+cosx)/(1-cosx)]}^2 = (2/IsinxI)^2
L^2 = (1-cosx)/(1+cosx) + 2V[(1-cosx)(1+cosx)/(1+cosx)(1-cosx)] + (1+cosx)/(1-cosx) =
= [(1-cosx)(1-cosx) + (1+cosx)(1+cosx)]/[(1+cosx)(1-cosx)] +2V[(1-cos^2(x))/(1-cos^2(x))] =
= (1 - cosx - cosx + cos^2(x) + 1 + cosx + cosx + cos^2(x))/sin^2(x) + 2*1 =
= [(2+2cos^2(x) + 2(1-cos^2(x))]/sin^2(x) = (2 + 2cos^2(x) + 2 - 2cos^2(x))/sin^2(x) = 4/sin^2(x)
P^2 = 4/sin^2(x)
L = V(4/sin^2(x)) = 2/IsinxI
P = V(4/sin^2(x)) = 2/IsinxI
L = P
Oznaczenia:
V - pierwiastek kwadratowy
sin^2(x) - sinus kwadrat x
cos^2(x) - cosinus kwadrat x
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
V[(1-cosx)/(1+cosx)] + V[(1+cosx)/(1-cosx)] = 2/IsinxI I^2 (obie strony podnoszę do 2-giej)
{V[(1-cosx)/(1+cosx)] + V[(1+cosx)/(1-cosx)]}^2 = (2/IsinxI)^2
L^2 = (1-cosx)/(1+cosx) + 2V[(1-cosx)(1+cosx)/(1+cosx)(1-cosx)] + (1+cosx)/(1-cosx) =
= [(1-cosx)(1-cosx) + (1+cosx)(1+cosx)]/[(1+cosx)(1-cosx)] +2V[(1-cos^2(x))/(1-cos^2(x))] =
= (1 - cosx - cosx + cos^2(x) + 1 + cosx + cosx + cos^2(x))/sin^2(x) + 2*1 =
= [(2+2cos^2(x) + 2(1-cos^2(x))]/sin^2(x) = (2 + 2cos^2(x) + 2 - 2cos^2(x))/sin^2(x) = 4/sin^2(x)
P^2 = 4/sin^2(x)
L = V(4/sin^2(x)) = 2/IsinxI
P = V(4/sin^2(x)) = 2/IsinxI
L = P
Oznaczenia:
V - pierwiastek kwadratowy
sin^2(x) - sinus kwadrat x
cos^2(x) - cosinus kwadrat x