Wykaż, że jeśli wielomian W(x) = ax3 + bx2 + cx + d, gdzie a ≠ 0, dla liczby 5 przyjmuje wartość 317, zaś dla liczby 1 przyjmuje wartość 12, to co najmniej jeden z jego współczynników nie jest liczbą całkowitą
4 lub wyrażenie w nawiasie musi dzielić 305. 4 nie dzieli 305, więc:
Ale mam tutaj sprzeczność, ponieważ, żeby te liczby były całkowite, to przynajmniej jeden ze współczynników musiałby być wymierny. Zatem przynajmniej jeden z nich nie jest liczbą całkowitą, co należało wykazać.
4 lub wyrażenie w nawiasie musi dzielić 305. 4 nie dzieli 305, więc:
Ale mam tutaj sprzeczność, ponieważ, żeby te liczby były całkowite, to przynajmniej jeden ze współczynników musiałby być wymierny. Zatem przynajmniej jeden z nich nie jest liczbą całkowitą, co należało wykazać.
///Khan.