October 2018 1 113 Report

Wykaż, że dla dowolnych x,y,z ∈ R₊ podana równość jest prawdziwa.

a) log \frac{x}{y} + log \frac{y}{x} = 0

b) log x²y² = log x + log y + log xy

c) log \frac{1}{xy^{2}} - log x ⁻¹ = -\frac{1}{2} log y⁴

d) log xyz = log \frac{x}{y} + log y²z

e) log xy + log \frac{z^{2}}{y} = log xyz - log \frac{y}{z}

f) 2 log \frac{x^{3}}{y} - 3 log x²z = 2 log (\frac{y}{z})⁻¹ - 5 log z

Z góry dziękuję za rozwiązanie, daję NAJ !


More Questions From This User See All

Recommend Questions



Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.