Wykaż, że dla dowolnych x,y,z ∈ R₊ podana równość jest prawdziwa.
a) log + log = 0
b) log x²y² = log x + log y + log xy
c) log - log x ⁻¹ = - log y⁴
d) log xyz = log + log y²z
e) log xy + log = log xyz - log
f) 2 log - 3 log x²z = 2 log ()⁻¹ - 5 log z
Z góry dziękuję za rozwiązanie, daję NAJ !
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)L=log(x/y)+log(y/x)=logx-logy+logy-logx=0=P
b)P=logx+logy+logxy=logxy+logxy=log(xy)^2=L
c)L=log1/(xy^2)-log(1/x)=log(x/(xy^2))=log1/y^2=-logy^2=-1/2 logy^4 =P
d)P=log(x/y)+log(y^2 z)=log((x/y)*y^2 z)=log(xyz)=L
e)L=logxy+log(z^2 /y)=log(xz^2 )
P=logxyz-log(y/z)=log(xyz)+log(z/y)=log(xz^2)=L
f)L=2log(x^3 /y)-3log(x^2 z)=log(x^3 /y)^2 +log(1/(x^2 z))^3 =log(1/(z^3 y^2))=-log(z^3 y^2)=-log(z^3 )-log(y^2)=-3logz-2logy
P=2log(z/y)-5logz=2logz-2logy-5logz=-3logz-2logy=L