" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
an₊₁ ={(4(n+1) +2}/{5(n+1)-1}= (4n+4+2)/(5n+5-1)= (4n+6)/ (5n+4)
an₊₁ - an= (4n+6)/(5n+4) - (4n+2)/(5n-1)=
sprowadzamy do wspólnego mianownika (5n+4)(5n-1)
= (4n+6)(5n-1)/ (5n+4)(5n-1) - (5n+4(4n+2)/ (5n+4)(5n-1)=
{(20n²-4n+30n -6) -(20n²+10n+16n+8)}/ (5n+4)(5n-1)=
(20n² +26n -6 -20n² -26n -8)/ (5n+4)(5n-1)= -8/ (5n+4)(5n-1) <0 , bo licznik jest ujemny, a mianownik dodatni.
Jeśli an₊₁ - an<0⇒ ciąg jest malejący