Wykaż, że ciąg (an) jest geometryczny.
a) an=
b) an=
c) an=
d) an=
e) an=
f) an=4 do potegi 2n-1
a)
a_n = 5/(2^n)
an+ 1 = 5/( 2^(n + 1))
zatem
2^n
a n+1 : an = 5 / ( 2 ^(n + 1) ) : 5 / ( 2^n) = --------- = 1/2
2* 2^n
q = 1/2
Jest to ciąg geometryczny o a1 = 5/2 i ilorazie q = 1/2
==============================================
b)
an = ( - 1/7)^n
an+1 = ( - 1/7)^(n + 1) = ( -1/7)*(-1/7)^n
więc
an+1 : an = - 1/7
q = - 1/7
Jest to ciag geometryczny o a1 = - 1/7 i ilorazie q = - 1/7
===============================================
c)
an = ( -1/3) *2^n
an+1 = (-1/3) *2^( n + 1) = ( -1/3) *2 * 2^n
an+1 : an = 2
q = 2
Jest to ciąg geometryczny o a1 = - 2/3 i ilorazie q = 2
============================================
d)
an = - 2 * (1/3)^n
an+1 = - 2 * ( 1/3)^( n + 1) = - 2 * (1/3) *(1/3)^n
an+1 : an = 1/3
q = 1/3
Jest to ciąg geometryczny o a1 = - 2/ 3 i ilorazie q = 1/3
================================================
e)
an = 6 * p(2)^( n - 1)
an+1 = 6 *p(2)^n
an+ 1 : an = p(2)
q = p(2)
Jest to ciąg geometryczny o a1 = 6 i ilorazie q = p(2)
=============================================
gdzie p(2) - pierwiastek kwadratowy z 2
f)
an = 4^(2n - 1)
an+1 = 4^(2n + 1)
Mamy
an+1 : an = 4 ^(2n + 1) : 4^(2n - 1) = 4^2 = 16
q = 16
Jest to ciąg geometryczny o a1 = 4 i ilorazie q = 16
==========================================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
a_n = 5/(2^n)
an+ 1 = 5/( 2^(n + 1))
zatem
2^n
a n+1 : an = 5 / ( 2 ^(n + 1) ) : 5 / ( 2^n) = --------- = 1/2
2* 2^n
q = 1/2
Jest to ciąg geometryczny o a1 = 5/2 i ilorazie q = 1/2
==============================================
b)
an = ( - 1/7)^n
an+1 = ( - 1/7)^(n + 1) = ( -1/7)*(-1/7)^n
więc
an+1 : an = - 1/7
q = - 1/7
Jest to ciag geometryczny o a1 = - 1/7 i ilorazie q = - 1/7
===============================================
c)
an = ( -1/3) *2^n
więc
an+1 = (-1/3) *2^( n + 1) = ( -1/3) *2 * 2^n
więc
an+1 : an = 2
q = 2
Jest to ciąg geometryczny o a1 = - 2/3 i ilorazie q = 2
============================================
d)
an = - 2 * (1/3)^n
więc
an+1 = - 2 * ( 1/3)^( n + 1) = - 2 * (1/3) *(1/3)^n
więc
an+1 : an = 1/3
q = 1/3
Jest to ciąg geometryczny o a1 = - 2/ 3 i ilorazie q = 1/3
================================================
e)
an = 6 * p(2)^( n - 1)
więc
an+1 = 6 *p(2)^n
an+ 1 : an = p(2)
q = p(2)
Jest to ciąg geometryczny o a1 = 6 i ilorazie q = p(2)
=============================================
gdzie p(2) - pierwiastek kwadratowy z 2
f)
an = 4^(2n - 1)
więc
an+1 = 4^(2n + 1)
Mamy
an+1 : an = 4 ^(2n + 1) : 4^(2n - 1) = 4^2 = 16
q = 16
Jest to ciąg geometryczny o a1 = 4 i ilorazie q = 16
==========================================