Wykaż, że: a) log₅ 50 = 2 + log₅ 2 b) log₃ 15 = 1 +log₃ 5 c) log₄ 6 + log₄ 8 = 2 + log₄ 3 d) log½ 5 - 1 = log½ 10
def logarytmu
loga b = c --> a^c=b
a) log₅ 50 = 2 + log₅ 2
P=log₅25+log₅2=log₅[25*2]=log₅50
L=P
b) log₃ 15 = 1 +log₃ 5
P=log₃3+log₃5=log₃[3*5]=log₃15
c) log₄ 6 + log₄ 8 = 2 + log₄ 3
L=log₄[6*8]=log₄48
P=log₄16+log₄3=log₄[16*3]=log₄48
d) log½ 5 - 1 = log½ 10
L=log½ 5-log½ 1/2=log½[5:1/2]=log½[5*2/1]=log½10
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
def logarytmu
loga b = c --> a^c=b
a) log₅ 50 = 2 + log₅ 2
P=log₅25+log₅2=log₅[25*2]=log₅50
L=P
b) log₃ 15 = 1 +log₃ 5
P=log₃3+log₃5=log₃[3*5]=log₃15
L=P
c) log₄ 6 + log₄ 8 = 2 + log₄ 3
L=log₄[6*8]=log₄48
P=log₄16+log₄3=log₄[16*3]=log₄48
L=P
d) log½ 5 - 1 = log½ 10
L=log½ 5-log½ 1/2=log½[5:1/2]=log½[5*2/1]=log½10
L=P