" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
f) x( 5 x[3] - 4x[2] + 9x - 8) =10
2*(x² -1)² + x*(2x + 3)² = 11x² + 14 x
2*(x² -1)² + x*(2x +3)² = x(11x + 14)
2*(x² -1)² + x*( 4x² +12x +9 -11x -14) = 0
2*(x² -1)² + x*( 4x² + x -5) = 0
2*( x^4 -2x² +1) + 4x³ + x² -5x = 0
2x^4 -4x² +2 + 4x³ + x² -5x =0
2x^4 +4x³ -3x² -5x +2 = 0
Rozkładamy na czynniki
(2x² +2x -1)*(x+2)*(x - 1) = 0
Δ = 4 -4*2*(-1) = 4 + 8 = 12 = 4*3
√Δ = 2*√3
x1 =( -2 -2*√3)/2 = -1 -√3
x2 =-1 +√3
Odp.x1 = -1 -√3; x2 = -1 + √3
x3 = -2 ; x4 = 1
f)
(3x - 2)² + 4x (1 - x²) = 6 - 5x^4
9x²-12x +4 +4x -4x³ = 6 - 5x^4
5x^4 - 4x³ +9x² -8x -2 = 0
(x-1)*(5x³+x²+10x +2) = 0
(x-1)*(5x +1)*(x²+ 2) = 0
5x +1 =0 <=> x = -1/5 = -0,2
x² +2 > 0
Odp. x1 = -0,2 oraz x2 = 1