Witam! Potrzebuję rozwiązania i objaśnienia, jak rozłożyc te dwa wielomiany na czynniki.
W(x)=x
W(x)=x^3+x^2-x-1=x^2(x+1)-(x+1)=(x+1)(x^2-1)=(x+1)(x-1)(x+1)
W(x)=x^6+3x^5-x^3-3x^2=x^2[(x^4+3x^3-x-3)]=x^2[x^3(x+3)-(x+3)]=
x^2(x+3)(x^3-1)=x^2(x+3)(x-1)(x^2+x+1)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
W(x)=x^3+x^2-x-1=x^2(x+1)-(x+1)=(x+1)(x^2-1)=(x+1)(x-1)(x+1)
W(x)=x^6+3x^5-x^3-3x^2=x^2[(x^4+3x^3-x-3)]=x^2[x^3(x+3)-(x+3)]=
x^2(x+3)(x^3-1)=x^2(x+3)(x-1)(x^2+x+1)