Wiedzac, ze x^2-x-1=0 wyznacz wartosc x^3-2x+1
Wykonam dzielenie wielomianow
(x³-2x+1):(x²-x-1)=x+1
-x³+x²+x
-----------
x²-x+1
-x²+x+1
-----------------
Reszta 2
x²-x-1 = 0, x³-2x+1 = ?
x²-x-1 = 0
Δ = 1+4 = 5
√Δ = √5
x1 = (1-√5)/2
x2 = (1+√5)/2
dla x1 = (1-√5)/2
x³-2x+1 = [(1-√5)/2]³-2[(1-√5)/2] +1 = ⅛(1-√5)³ -(1-√5)+1 = ⅛(1-3√5+15-5√5)-1+√5+1 =
= ⅛(16-8√5)+√5 = 2-√5+√5 = 2
dla x2 = (1+√5)/2
x³-2x+1 = [(1+√5)/2]³-2[(1+√5)/2]+1 = ⅛(1+√5)³-(1+√5)+1 = ⅛(1+3√5+15+5√5)-1-√5+1 =
= ⅛(16+8√5)-1-√5+1 = 2+√5-√5 = 2
Odp. x³-2x+1 = 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Wykonam dzielenie wielomianow
(x³-2x+1):(x²-x-1)=x+1
-x³+x²+x
-----------
x²-x+1
-x²+x+1
-----------------
Reszta 2
x²-x-1 = 0, x³-2x+1 = ?
x²-x-1 = 0
Δ = 1+4 = 5
√Δ = √5
x1 = (1-√5)/2
x2 = (1+√5)/2
dla x1 = (1-√5)/2
x³-2x+1 = [(1-√5)/2]³-2[(1-√5)/2] +1 = ⅛(1-√5)³ -(1-√5)+1 = ⅛(1-3√5+15-5√5)-1+√5+1 =
= ⅛(16-8√5)+√5 = 2-√5+√5 = 2
dla x2 = (1+√5)/2
x³-2x+1 = [(1+√5)/2]³-2[(1+√5)/2]+1 = ⅛(1+√5)³-(1+√5)+1 = ⅛(1+3√5+15+5√5)-1-√5+1 =
= ⅛(16+8√5)-1-√5+1 = 2+√5-√5 = 2
Odp. x³-2x+1 = 2