Odpowiedź:
b - krawędź boczna
h - wysokość ściany bocznej
b/h = 13/12
13h = 12b
h = 12b/13
a - krawędź podstawy
a²/4 = b² - h² = b² - (12b/13)² = b² - 144b²/169 = (169b² - 144b²)169 =
= 25b²/169
a/2 = √(25b²/169)= 5b/13
a = 2 * 5b/13 = 10b/13
Pp - pole podstawy = a²√3/4 = (10b/13)² * √3/4 = 100b²/169 * √3/4 =
= 25b²√3/169
Pb - pole boczne = 3 * 1/2 * a * h = 3 * 1/2 * 10b/13 * 12b/13 =
= 3/2 * 120b²/169 = 3 * 60b²/169 = 180b²/169
Pb : Pp = 180b²/169 : 25b²√3/169 = 180b²/169 * 169/25b²√3 =
= 180/25√3 = 7,2/√3 = 7,2√3/3 = 2,4√3 c.n.u
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
b - krawędź boczna
h - wysokość ściany bocznej
b/h = 13/12
13h = 12b
h = 12b/13
a - krawędź podstawy
a²/4 = b² - h² = b² - (12b/13)² = b² - 144b²/169 = (169b² - 144b²)169 =
= 25b²/169
a/2 = √(25b²/169)= 5b/13
a = 2 * 5b/13 = 10b/13
Pp - pole podstawy = a²√3/4 = (10b/13)² * √3/4 = 100b²/169 * √3/4 =
= 25b²√3/169
Pb - pole boczne = 3 * 1/2 * a * h = 3 * 1/2 * 10b/13 * 12b/13 =
= 3/2 * 120b²/169 = 3 * 60b²/169 = 180b²/169
Pb : Pp = 180b²/169 : 25b²√3/169 = 180b²/169 * 169/25b²√3 =
= 180/25√3 = 7,2/√3 = 7,2√3/3 = 2,4√3 c.n.u