W ciągu arytmetycznym: a_(522)=25, a_(523)=34
Wyznacz a_(1), a_(3030), a_(n)
Daje naj :)
a₅₂₂=a₁+521 ·r
a₅₂₃=a₁+522 ·r
r=a₅₂₃ - a₅₂₂=34 - 25= 9
34=a₁+522·9
a₁=34-4698= - 4664
a₃₀₃₀=a₁+3029·r= -4664+3029·9= -4664+27261= 22597
an= - 4664+(n-1)9= - 4664+9n -9= 9n - 4673
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a₅₂₂=a₁+521 ·r
a₅₂₃=a₁+522 ·r
r=a₅₂₃ - a₅₂₂=34 - 25= 9
a₅₂₃=a₁+522 ·r
34=a₁+522·9
a₁=34-4698= - 4664
a₃₀₃₀=a₁+3029·r= -4664+3029·9= -4664+27261= 22597
an= - 4664+(n-1)9= - 4664+9n -9= 9n - 4673