Penjelasan dengan langkah-langkah:
VOLUME BENDA PUTAR
y = 3x + 1
x = 1 dan x = 2
diputar 360° di sumbu x
CARI PERPOTONGAN GARIS
1) untuk x = 1
y = 3(1) + 1
= 4
maka titiknya ( 1 , 4 )
2) untuk x = 2
y = 3(2) + 1
= 7
maka titiknya ( 2 , 7 )
Jika
a = 1 , dan b = 2 , f(x) = 3x + 1
Maka
[tex]V _{x} = \pi\int_{1} {}^{2} (f(x) {}^{2} dx \\ \\ V _{x} = \pi\int_{1} {}^{2} (3x + 1) {}^{2} dx \\ V _{x} = \pi\int_{1} {}^{2} \: \: 9 {x}^{2} + 6x + 1 \: \: dx \\ V _{x} = \pi \: ( \frac{ {9x}^{2 + 1} }{2 + 1} + \frac{ {6x}^{1 + 1} }{1 + 1} + 1x) | _{1} {}^{2} \\ V _{x} = \pi(3 {x}^{3} + 3 {x}^{2} + 1x)| _{1} {}^{2} \\ = \pi((3( {2}^{3} ) + {3(2}^{2}) + 1(2) - ((3( {1}^{3} ) + {3(1}^{2}) + 1(1)) \\ = \pi((24 + 12 + 2) - (3 + 3 + 1)) \\ = \pi(38 - 7) \\ = 31\pi[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
VOLUME BENDA PUTAR
y = 3x + 1
x = 1 dan x = 2
diputar 360° di sumbu x
CARI PERPOTONGAN GARIS
1) untuk x = 1
y = 3(1) + 1
= 4
maka titiknya ( 1 , 4 )
2) untuk x = 2
y = 3(2) + 1
= 7
maka titiknya ( 2 , 7 )
Jika
a = 1 , dan b = 2 , f(x) = 3x + 1
Maka
[tex]V _{x} = \pi\int_{1} {}^{2} (f(x) {}^{2} dx \\ \\ V _{x} = \pi\int_{1} {}^{2} (3x + 1) {}^{2} dx \\ V _{x} = \pi\int_{1} {}^{2} \: \: 9 {x}^{2} + 6x + 1 \: \: dx \\ V _{x} = \pi \: ( \frac{ {9x}^{2 + 1} }{2 + 1} + \frac{ {6x}^{1 + 1} }{1 + 1} + 1x) | _{1} {}^{2} \\ V _{x} = \pi(3 {x}^{3} + 3 {x}^{2} + 1x)| _{1} {}^{2} \\ = \pi((3( {2}^{3} ) + {3(2}^{2}) + 1(2) - ((3( {1}^{3} ) + {3(1}^{2}) + 1(1)) \\ = \pi((24 + 12 + 2) - (3 + 3 + 1)) \\ = \pi(38 - 7) \\ = 31\pi[/tex]