" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x/(x+1) ≥0; x≠-1
(x≥0 ∧ x+1>0) ∨ (x≤0 ∧ x+1<0)
x≥0 ∨ x<-1
Dom f = {x/ x∈ (-∞,-1) ∪ [0, ∞)}
Para hallar el rango
La función f(x) puede ser reescrita como
f(x) = √[1/(1+1/x)]
x≥0 → 1/x > 0
1/x + 1 > 1
1/(1+ 1/x) < 1
√[1/(1+ 1/x)] < 1
f(x) < 1
x<-1 → -1<1/x <0
0<1+1/x<1
1+1/x >0 → 1/(1+1/x) > 0
√[1/(1+1/x)] > 0
f(x) ≥ 0, ya que cuando x=0 f(x) = 0
Rg f: {y / y∈ [0;1)}