Uprość wyrażenie :
(a+b)^2 - (a-b)^2
Wzory skróconego mnożenia:
(a+b)²=a²+2ab+b² - kwadrat sumy;
(a-b)²=a²-2ab+b² - kwadrat różnicy;
a²-b²=(a-b)(a+b) - różnica kwadratów;
===============
I sposób:
(a+b)² - (a-b)²=
=a²+2ab+b² - (a²-2ab+b²)=
=a²+2ab+b²-a²+2ab-b²=
=4ab
---
II sposób
=[(a+b)-(a-b)][(a+b)+(a-b)]=
=[a+b-a+b][a+b+a-b]=
=2b*2a=
(a+b)^2 - (a-b)^2=a^2+2ab+b^2-a^2+2ab-b^2=4ab
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Wzory skróconego mnożenia:
(a+b)²=a²+2ab+b² - kwadrat sumy;
(a-b)²=a²-2ab+b² - kwadrat różnicy;
a²-b²=(a-b)(a+b) - różnica kwadratów;
===============
I sposób:
(a+b)² - (a-b)²=
=a²+2ab+b² - (a²-2ab+b²)=
=a²+2ab+b²-a²+2ab-b²=
=4ab
---
II sposób
(a+b)² - (a-b)²=
=[(a+b)-(a-b)][(a+b)+(a-b)]=
=[a+b-a+b][a+b+a-b]=
=2b*2a=
=4ab
(a+b)^2 - (a-b)^2=a^2+2ab+b^2-a^2+2ab-b^2=4ab