" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
☟
x² + y² + z² + 2xy + 2xz + 2yz = 0
x² + y² + z² ≥ 0 zawsze !!!
+☟ _
(x² + y² + z²) + 2(xy + xz + yz) = 0 ⇔ (+) + (-)=0
- ☝
2(xy + xz + yz) ≤ 0 zawsze !!! przy x + y + z = 0
☟
(xy + xz + yz) ≤ 0 zawsze !!! przy x + y + z = 0
2xy + 2xz + 2yz < 0
(x+y)2 - x2 - y2 + (x+z)2 - x2 - z2 + (y+z)2 - y2 - z2 < 0
(x+y)2 + (x+z)2 + (y+z)2 < 2x2 + 2y2 + 2z2
2.
x + y + z = 0
(x + y + z)2 = 0
x2 + y2 + z2 + 2xy + 2xz +2 yz = 0
(x+y)2 + (x+z)2 + (y+z)2 - x2 - z2 - y2 = 0
(x+y)2 + (x+z)2 + (y+z)2 = x2 + z2 + y2
3. podstawiam
x2+ z2 + y2 < 2x2 + 2y2 + 2z2
x2 + y2 + z2 > 0
c.n.d.