udowodnij, że pole kołą opisanego na kwadracie jest 2 razy wieksze od pola koła wpisanego w ten kwadrat
r koła opisanego na kwadracie = połowie przekatnej kwadratu
r = (a√2)/2
Pole 1 = πr² = (2a²π)/4
r koła wpisanego = połowie boku kwadratu, r = 1/2a
Pole 2 =(a²π)/4
P1/p2 = (2a²π)/4 * 4/a²π
czwórki nam się skrócą i zostaje 2a²π/a²π = 2--------------co onacza ze P1 jest 2 razy większe
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
r koła opisanego na kwadracie = połowie przekatnej kwadratu
r = (a√2)/2
Pole 1 = πr² = (2a²π)/4
r koła wpisanego = połowie boku kwadratu, r = 1/2a
Pole 2 =(a²π)/4
P1/p2 = (2a²π)/4 * 4/a²π
czwórki nam się skrócą i zostaje 2a²π/a²π = 2--------------co onacza ze P1 jest 2 razy większe