Trójkąt ABC jest podobny do trójkata A'B'C'. Oblicz długości boków trójkąta A'B'C' jeśli: |AB|=5, |BC|=6, |AC|=7 i skala podobieństwa k=3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
IABI = 5 = a
IBCI = 6 = b
IACI = 7 = c
k = 3
IA₁B₁I = a₁= ?
IB₁C₁I = b₁ = ?
IC₁D₁I = c₁= ?
k = a₁/a, k = b¹/b i k = c¹/c
Z tych równości wynika, że:
a₁ = IA₁B₁I = k·5 = 3·5 = 15
b₁ = IB₁C₁I = k·6 = 3·6 = 18
c₁ = IA₁C₁I = k·7 = 3·7 = 21
Odp. IA₁B₁I = 15, IB₁C₁I = 18, IA₁C₁I = 21