Trapez, którego jedno ramię tworzy kąty proste z podstawami, nazywa się treapezem prostokątnym.
W trapezie porostokątnym ramię prostopadłe jest wysokością trapezu.
Równoległobok jest szczególnym przypadkiem trapezu równoramiennego - o dwóch parach boków równoległych. Równoległobokiem nazywamy czworokąt, w którym przeciwległe boki są parami równe i równoległe.
Ob = 2a + 2b P = a · h = a · b · sinα P=12 d1·d2 ·sinγ
Własności: - przeciwległe boki są równoległe, - przeciwległe boki są tej samej długości, - przekątne dzielą się na połowy, - przeciwległe kąty są równe, - suma dwóch sąsiednich kątów równa jest 180°, - przekątne dzielą się na połowy i wyznaczają punkt, będący środkiem ciężkości równoległoboku - przekątna dzieli równoległobok na dwa przystające trójkąty - na równoległoboku, który nie jest prostokątem, nie możne opisać okręgu i nie można też w niego wpisać okrąg.
Rombem nazywamy czworokąt, którego wszystkie boki są równe. Jest to szczególny przypadek równoległoboku.
Ob = 4a P = a · h = a2 · sinα P=12 d1·d2
Własności - wszystkie boki są równe, - przeciwległe boki są równoległe, - suma miar dwóch kątów sąsiednich wynosi 180°, - przekątne zawierają się w dwusiecznych kątów, - przekątne rombu dzielą się na połowy pod kątem prostym, - punkt przecięcia przekątnych rombu wyznacza środek okręgu wpisanego w romb, - przekątne rombu dzielą go na cztery przystające trójkąty prostokątne, - punkt przecięcia przekątnych jest środkiem symetrii rombu.
Prostokątem nazywamy czworokąt, którego wszystkie kąty wewnętrzne to kąty proste.
Ob = 2a + 2b P = a · b d= a2+b2
Własności - przeciwległe boki są równe i równoległe, - sąsiednie boki są prostopadłe, - każdy z kątów jest kątem prostym, - przekątne są równe i dzielą się na połowy, - punkt przecięcia przekątnych jest środkiem okręgu opisanego na prostokącie, - przekątna dzieli prostokąt na dwa przystające trójkąty prostokątne.
Kwadratem nazywamy taki czworokąt, który ma wszystkie boki i kąty równe.
Ob = 4a P = a2 P=12d2 d=a2
Własności - wszystkie boki są równe, - przeciwległe boki są równoległe, - wszystkie kąty są proste, - przekątne są równej długości, - przekątne dzielą się na połowę pod kątem prostym, - przekątne zawierają się w dwusiecznych kątów kwadratu, - przekątna dzieli prostokąt na dwa przystające trójkąty prostokątne, - punkt przecięcia się przekątnych jest środkiem symetrii kwadratu, - punkt przecięcia przekątnych wyznacza środek okręgu wpisanego i opisanego na kwadracie.
Deltoidem nazywamy czworokąt posiadający dwie pary boków sąsiednich równych, w którym żadne dwa boki nie są wzajemnie równoległe.
Ob = 2a + 2b P=12 d1·d2 P = a · b · sinα
Własności - kolejne boki są równe, - kąty między różnymi bokami są równe, - przekątne są prostopadłe, - przekątna d2 dzieli deltoid na dwa trójkąty równoramienne.
Trapez, którego jedno ramię tworzy kąty proste z podstawami, nazywa się treapezem prostokątnym.
W trapezie porostokątnym ramię prostopadłe jest wysokością trapezu.
Równoległobok jest szczególnym przypadkiem trapezu równoramiennego - o dwóch parach boków równoległych. Równoległobokiem nazywamy czworokąt, w którym przeciwległe boki są parami równe i równoległe.
Ob = 2a + 2b
P = a · h = a · b · sinα
P=12 d1·d2 ·sinγ
Własności:
- przeciwległe boki są równoległe,
- przeciwległe boki są tej samej długości,
- przekątne dzielą się na połowy,
- przeciwległe kąty są równe,
- suma dwóch sąsiednich kątów równa jest 180°,
- przekątne dzielą się na połowy i wyznaczają punkt, będący środkiem ciężkości równoległoboku
- przekątna dzieli równoległobok na dwa przystające trójkąty
- na równoległoboku, który nie jest prostokątem, nie możne opisać okręgu i nie można też w niego wpisać okrąg.
Rombem nazywamy czworokąt, którego wszystkie boki są równe. Jest to szczególny przypadek równoległoboku.
Ob = 4a
P = a · h = a2 · sinα
P=12 d1·d2
Własności
- wszystkie boki są równe,
- przeciwległe boki są równoległe,
- suma miar dwóch kątów sąsiednich wynosi 180°,
- przekątne zawierają się w dwusiecznych kątów,
- przekątne rombu dzielą się na połowy pod kątem prostym,
- punkt przecięcia przekątnych rombu wyznacza środek okręgu wpisanego w romb,
- przekątne rombu dzielą go na cztery przystające trójkąty prostokątne,
- punkt przecięcia przekątnych jest środkiem symetrii rombu.
Prostokątem nazywamy czworokąt, którego wszystkie kąty wewnętrzne to kąty proste.
Ob = 2a + 2b
P = a · b
d= a2+b2
Własności
- przeciwległe boki są równe i równoległe,
- sąsiednie boki są prostopadłe,
- każdy z kątów jest kątem prostym,
- przekątne są równe i dzielą się na połowy,
- punkt przecięcia przekątnych jest środkiem okręgu opisanego na prostokącie,
- przekątna dzieli prostokąt na dwa przystające trójkąty prostokątne.
Kwadratem nazywamy taki czworokąt, który ma wszystkie boki i kąty równe.
Ob = 4a
P = a2
P=12d2
d=a2
Własności
- wszystkie boki są równe,
- przeciwległe boki są równoległe,
- wszystkie kąty są proste,
- przekątne są równej długości,
- przekątne dzielą się na połowę pod kątem prostym,
- przekątne zawierają się w dwusiecznych kątów kwadratu,
- przekątna dzieli prostokąt na dwa przystające trójkąty prostokątne,
- punkt przecięcia się przekątnych jest środkiem symetrii kwadratu,
- punkt przecięcia przekątnych wyznacza środek okręgu wpisanego i opisanego na kwadracie.
Deltoidem nazywamy czworokąt posiadający dwie pary boków sąsiednich równych, w którym żadne dwa boki nie są wzajemnie równoległe.
Ob = 2a + 2b
P=12 d1·d2
P = a · b · sinα
Własności
- kolejne boki są równe,
- kąty między różnymi bokami są równe,
- przekątne są prostopadłe,
- przekątna d2 dzieli deltoid na dwa trójkąty równoramienne.