Odpowiedź:
L = [tex]\frac{tg x + cos x}{cos x*sin x} = \frac{tg x}{cos x * sin x} + \frac{1}{sin x} =[/tex] [tex]\frac{1}{sin x} + \frac{\frac{sin x}{cos x} }{sin x *cos x} =[/tex] [tex]\frac{1}{sin x} + \frac{sin x}{sin x*cos x*cos x} =[/tex]
[tex]= \frac{1}{sin x} + \frac{1}{cos^2 x} = P[/tex]
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
L = [tex]\frac{tg x + cos x}{cos x*sin x} = \frac{tg x}{cos x * sin x} + \frac{1}{sin x} =[/tex] [tex]\frac{1}{sin x} + \frac{\frac{sin x}{cos x} }{sin x *cos x} =[/tex] [tex]\frac{1}{sin x} + \frac{sin x}{sin x*cos x*cos x} =[/tex]
[tex]= \frac{1}{sin x} + \frac{1}{cos^2 x} = P[/tex]
Szczegółowe wyjaśnienie: